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1. Introduction

The failure of a system is usually caused by internal degradation 
or external random shocks. The failure caused by internal degradation 
is called soft failure, such as erosion, fatigue, wear, etc. And the hard 
failure is caused by external random shocks, such as device break-
down, short circuit, etc. The degradation processes for components 
in a system and a shock process arriving at the system compete with 
each other. The occurrence of any failure mode may lead to the failure 
of systems. A system deteriorates with its use and age, which is a con-
tinuous accumulation of degradation. However, the hard failure may 
or may not happen in its life cycle. 

In many studies [10, 14, 28, 32], the competing risks were treated 
as independent. However, the natural degradation processes of a sys-
tem are usually affected by the shock loads. That is, the same shock 

arriving at a system will influence the degradation process of each 
component. Hence, the assumption of independence between compet-
ing risks is not reasonable, and it may cause underestimation or over-
estimation of the system reliability. It is very necessary to consider the 
dependence relationship between multiple degradation processes and 
a shock process when establishing the reliability model for a system.

Recently, some researchers [5, 15] have taken the dependence re-
lationship into account to develop the reliability model of a system. 
Peng and Feng [20] built a reliability model for the system subject 
to multiple dependent competing risks, where dependent competing 
risks referred to soft failure and hard failure. Soft failure was caused 
by continuous natural degradation and additional SDI due to random 
shocks. Hard failure was induced by fatal shock loads from the shock 
process. Jiang and Feng [11] proposed a reliability model for a sys-
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tem subject to multiple dependent competing risks. In their research, 
the shock threshold may shift due to exposure to various shock pat-
terns. Guo and Wang [8] developed a joint copula reliability model 
for systems subject to two degradation processes and a random shock 
process. Song and Coit [24] developed a reliability model for a multi-
component system. They thought a system may fail due to any soft 
failure process or hard failure process. Meanwhile, the soft failure 
processes of different components in a system were mutually compet-
ing. Besides, Song and Coit [25] also established a reliability model 
for multi-component systems subject to dependent competing risks 
of natural degradation and random shocks, in which the shocks were 
categorized according to their sizes, function, etc. 

Previous researches have mainly investigated the dependence 
relationship between multiple degradation processes and a shock 
process based on an assumption that the arrival of each shock only 
causes SDIs. Nevertheless, the assumption is not always reasonable 
for systems with high reliability and long life because they have the 
ability to resist small shock loads. The research by Jiang and Feng 
[12] manifested that small shock loads had no effect on the degrada-
tion process, which was supposed to be a gamma process. In addition, 
Wang and Pham [29] considered two types of shocks when evaluating 
the system reliability: fatal shock loads leading to the hard failure of 
systems and general shock loads increasing the system degradation 
level. Moreover, a novel reliability model was proposed by An and 
Sun [1] for highly reliable systems experiencing multiple dependent 
competing risks. They assumed that only shock loads above a cer-
tain level can affect degradation processes. In their study, shock loads 
were separated into three parts by the shock threshold and the cer-
tain level. The first part of shocks, which were above the hard failure 
threshold, were fatal shocks causing sudden failure. The shocks in 
the second part were general shocks, which were between the certain 
level and shock threshold. Only general shocks can cause SDIs. The 
rest of shocks were small shocks, which were supposed to have no 
effect on degradation processes. However, almost all the researchers 
were used to considering the SDIs of degradation processes and ignor-
ing the impact of general shock loads on the degradation rate. What is 
more, in most previous studies about the random shock process, the 
arrival of shocks was assumed to be a homogeneous Poisson process 
(HPP) [30]. But this assumption is not always appropriate for systems 
which work in the convoluted environment. Under a complex circum-
stance, the occurrence rate of shocks is a variable rather than a con-

stant. Therefore, the as-
sumption that the arrival 
of shocks is a NHPP may 
be more reasonable [2, 9]. 
 

Motivated by the 
above, we propose a new 
reliability model to evalu-
ate the reliability of the 
system subject to multi-
ple dependent compet-
ing risks. In the model, 
the general shock loads 
can bring about DRA in 
degradation processes, 
besides SDIs. In addition, 
only shock loads above a 
certain level can impact 
the degradation processes. 
The dependence between 
a shock process and multi-
ple degradation processes 
is dealt with by condition-
al probability. In addition, 
the dependence relation-

ship between multiple degradation processes is solved by a copula 
method. The arrival of shocks is assumed to be a NHPP. A summary 
of the comparison with existing reliability models is presented in Ta-
ble 1. The remainder of this paper is organized as follows: a system 
subject to multiple dependent competing risks is described in Section 
2. In Section 3, we develop a new reliability model in which DRA is 
considered into the degradation path. In Section 4, a numerical ex-
ample is presented to validate the proposed reliability model. Finally, 
some concluding remarks are given in Section 5.

2. System description 

In fact, systems with multiple components used in industrial ap-
plications always experience two types of failures: soft failure and 
hard failure. Either of them may lead to the failure of systems. As-
sume that there are i components in a system and every component 
experiences a degradation process. Once a shock arriving at the sys-
tem, it will affect all the degradation processes. If there are no random 
shocks, the ith natural degradation process corresponding to the ith 
component of the system is shown in Figure 1, which is a continuous 
increasing process [3]. Di(t) represents the wear volume of the ith 
component of the system at t. The threshold of soft failure of the ith 
component is denoted by l(i). 

As shown in Figure 2, any random shock arriving at the system, 
whose load is above the threshold of hard failure WU, may cause the 
failure of components in the system. Meanwhile, general shocks, 
whose loads are between the failure threshold WU and a certain level 
WL, could give rise to the SDI of every component once they arrive at 
the system. Actually, the sudden degradation increments on different 
components caused by the same shock may be different due to the dif-
ferent material properties of components. In addition, small shocks, 
whose loads are below the certain level WL, have no effect on deg-
radation processes of components due to the system’s good perform-
ance. It indicates that the degradation process and the shock process 
are dependent because every degradation process is affected by the 
same shock process.

From Figure 3, we can see that the total degradation of the ith 
component in a system is composed of natural degradation and SDIs, 
which is denoted by Yij (i=1, 2, …, m; j=1, 2, …, ∞). Yij represents the 
SDIs of the ith component of a system caused by the jth shock arriving 

Table 1. Comparisons with existing reliability models

Models DBDS1 SDIs2 CL3 DRA4 NDP5 ATS6

Peng, Feng and Coit (2010) Y Y 1 HPP

Guo, Wang and Guo (2013) Y Y 2 HPP

Song, Coit, and Feng (2014) Y Y m HPP

Jiang, Feng, and Coit (2015) Y Y Y 1 HPP

Wang and Pham (2012) Y Y Y m HPP

An and Sun (2017) Y Y Y m HPP

Huynh, Castro, and Barros (2012) N 1 NHPP

Bocchetti, Giorgio, and Guida (2009) N 1 NHPP

Proposed model Y Y Y Y m NHPP
1 Dependence between degradation and shocks. 
2 Sudden degradation increments.
3 Certain level.
4 Degradation rate acceleration.
5 Number of degradation processes.
6 Arrival time of shocks.
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at the system. The ith component occurs soft failure once the cumula-
tive degradation of any component exceeds its soft failure threshold 
l(i). The total degradation M(i)(t) (i=1, 2, …, m) of the ith component 
exceeds the degradation threshold l(i) or the magnitude of a shock ex-
ceeds the shock threshold WU, which will result in the failure of the 
component. 

With the development of science and technology, the reliability of 
modern products has been greatly improved. The failure occurs rarely 
in a long working time. However, many products degrade over time 
before they fail or break down. Thus, in many engineering reliability 
experiments, the measure of degradation can be observed over a pe-
riod of time before failure occurs to provide additional information of 
systems. There are many studies to overcome this kind of difficulty. 
For highly-reliable or long-life modern products, it often takes much 
more time to obtain lifetime and degradation data under usual use 
conditions. One solution is to use accelerated degradation tests to col-
lect the performance degradation data at greater environmental stress 
levels so that the degradation data can be analyzed earlier before any 
specimens “fail” [6, 16, 17, 19, 21, 22, and 31]. For the convenience 

to exhibit reliability model, a summary of the main notations used in 
this paper is presented in Table 2.

3. Proposed reliability model with degradation rate 
acceleration

Recently, many reliability models have been developed to esti-
mate the reliability of systems which are subject to multiple dependent 
competing risks. Song and David [24-25] considered that any shock 
load on the system increases the amount of degradation. However, 
the research by Tanner and Walraven [27] showed that no SDIs in 
micro-engine when shock loads are below a certain level. Thus, for 
systems with high reliability and long life, only those shocks, whose 
loads are above a certain level, can increase systems’ degradation. 
However, general shocks may result in an increase in degradation rate 
as well as SDIs. Based on the analysis above, a new reliability model 
is proposed to contribute to the improvement of reliability evaluation. 
In the reliability model, DRA caused by general shock loads is paid 
attention to. Random shocks are divided into three parts: fatal shocks, 
general shocks and small shocks. In addition, the arrival time of ran-
dom shocks is assumed to follow a NHPP instead of HPP.

3.1. Reliability analysis for shock process

Random shocks are likely to be introduced from the external en-
vironment. Most shocks are harmful to systems, decreasing residual 
useful life of systems. Even, some shocks may immediately cause the 
failure of the system.

Table 2. List of symbols and definitions

Symbol Definition

N1(t) Number of general shocks at time t 

N2(t) Number of fatal shocks at time t 

WU Hard failure threshold for the shock process

WL
A certain level only above which the sudden degradation 
increments occurs 

Wij Magnitude of the jth general shock on the ith component

λ(t) Intensity function of non-homogeneous Poisson process 
at time t 

p1 Probability of general shock

p2 Probability of fatal shock

Di(t) Natural degradation at time t for the ith component

Si(t) Cumulative sudden degradation increments of the ith 
component caused by general shocks at time t 

M(i)(t) Cumulative degradation of the ith component at time t 

Yij
Sudden degradation increments of the ith component 
caused by the jth general shock

γ1
(i) Coefficient of general shock number on the ith component

γ2
(i) Coefficient of cumulative sudden degradation increments 

on the ith component

l(i) Soft failure threshold of the ith component

T(i) Failure time of the ith component

RM
(i) (t) Marginal reliability function of the ith component at time t

R(t) System reliability function at time t

C Copula function

Fig. 1. Continuous degradation of the ith component

Fig. 2. Magnitude of every shock arriving at the system imposed on the ith 
component

Fig. 3. Total degradation of the ith component
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As shown in Figure 2, for a system with m components, any shock 
arriving at the system will affect all the m components. Take the ith 
component for example, the magnitude of shock load imposed on it 
is denoted by Wij (i=1, 2, …, m; j=1, 2, …, ∞), which is caused by jth 
shock reaching the system. The component fails once Wij exceeds the 
shock threshold WU. Assume Wij imposed on the ith component of the 
system is independent and identically distributed (i.i.d) random vari-
able. Then the cumulative distribution function of Wij can be denoted 
by ( )

ijWF w , then the probability that the hard failure of the ith com-
ponent does not occur under the jth shock is:

 ( ) ( ), 1,2, , ; 1,2, ,
ijij U W UP W W F W i m j< = = = ∞   (1)

To simplify the calculation process, Wij for the ith component is 
assumed to follow a normal distribution N W Wi i

( , )µ σ 2 . Then Equation 
(1) can be expressed by:

 P W W
W

i m jij U
U W

W

i

i

( ) ( ), , , , ; , , ,< =
−

= = ∞φ
µ

σ
1 2 1 2        (2)

3.2. Reliability analysis for degradation process 

As is shown in Figure 3, the soft failure of the ith degradation 
process happens when total degradation M(i)(t) exceeds its degrada-
tion threshold l(i). The total degradation M(i)(t) includes continuous 
natural degradation amount and SDIs.

3.2.1. Analysis of SDI

It is assumed that the probabilities of shocks occurring at different 
time intervals are independent. Simultaneously, these random shocks 
are supposed to occur in a NHPP with an intensity function:

 λ( ) , ( , ), ( , )t re r cct= ∈ ∞ ∈ −∞ +∞0  (3)

Let N(t) represent the number of random shocks until t. Then 
the numbers of general shocks and fatal shocks can be denoted by 
N1(t) and N2(t), respectively. The probability of general shocks is 
p1=P(WL<Wij<WU). And the probability of fatal shocks can be cal-
culated as p2=P(Wij>WU). According to the decomposition method of 
Poisson process, the arrival time of general shocks follows a NHPP 
with an intensity function:

 λ λ1 1 1 0( ) ( ) , ( , ), ( , )t p t p re r cct= = ∈ ∞ ∈ −∞ +∞  (4)

Similarly, the arrival time of fatal shocks also follows a NHPP 
with an intensity function:

 λ λ2 2 2 0( ) ( ) , ( , ), ( , )t p t p re r cct= = ∈ ∞ ∈ −∞ +∞  (5)

Then the numbers of arrivals for general shocks and fatal shocks 
at time t are given by:

 [ ] 1
1 1 1

0 1

( 1), 0
( ) ( )

, 0

ctt
cs

rp e c
W t E N t p re ds c

p rt c

 ⋅ − ≠= = = 
 ⋅ =

∫  (6)

 [ ] 2
2 2 2

0 2

( 1), 0
( ) ( )

, 0

ctt
cs

rp e c
W t E N t p re ds c

p rt c

 ⋅ − ≠= = = 
 ⋅ =

∫        (7)

Therefore, the probability of n general shocks and n fatal shocks 
reaching the system are calculated by Equation (8) and Equation (9), 
respectively:

 1( )1
1

( ( ))( ( ) )
!

n
W tW tP N t n e

n
−= =  (8)

 2 ( )2
2

( ( ))( ( ) )
!

n
W tW tP N t n e

n
−= =  (9)

General shocks usually cause additional damages to degradation 
processes. Here, we utilize Yij (i=1, 2, …, m; j=1, 2, …, ∞) to represent 
the SDIs in ith degradation process caused by the jth general shock 
arriving at the system. What is more, Yij greatly depends on the magni-
tude of shock load Wij (i=1, 2, …, m; j=1, 2, …, ∞). Yij is described by 
a linear function, which reflects the difference between the magnitude 
of shock load Wij and the certain level WL, namely:

 
( )ij ij LY b W W= −  (10)

where b is a constant, which indicates the SDIs in degradation 
process caused by a unit change in the magnitude of shock load. Then, 
the cumulative degradation caused by general shocks at time t can be 
written as:

 

1( )

1
1

1

, ( ) 0
( )

0, ( ) 0

N t

ij
i j

Y N t
S t

N t
=


>

= 
 =

∑  (11)

3.2.2. Analysis of continuous natural degradation

Consider a system with unknown soft failure threshold, which 
is a fixed quantity. The system is placed under an environment with 
accelerated stress levels, which is steadily increased until the failure 
of the system. Assume the increasing loads are converted to discrete 
values so the stress is incremented by small, discrete amounts until the 
system fails. And each small increment of stress causes a nonnegative 
damage amount, which is a random variable and denoted by X. Ac-
cording to [7, 13, 23], the cumulative damage after n+1 increments of 
stress is denoted by:

 D D X Dn n n n+ = + ⋅1 η( )  (12)

where ƞ(µ) is the damage model function. For example, ƞ(µ)=1 
gives an additive damage model, whereas ƞ(µ)=µ gives a multiplica-
tive damage model. In fact, the stress is incremented by continuous 
amounts, so the cumulative damage of the system at t should be:

 D t X t( ) ( )= ⋅η  (13)

In this paper, a multiplicative path function is used to reflect the 
item-to-item variation. Then the degradation model of the ith degrada-
tion process for a series system with m components is given by:

 D t X ti i i( ) ( )= ⋅η  (14)
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where Xi is a random variable, ηi(t) represents the mean degradation 
path in the ith degradation process, which is either monotonically de-
creasing or monotonically increasing. 

The cumulative degradation M(i)(t) at time t for the ith degradation 
process consists of natural degradation and the SDIs caused by the 
general shocks, which is written as:

 ( ) ( ) ( ) ( )i
i iM t D t S t= +  (15)

The first term Di(t) refers to the continuous natural degradation of 
the ith degradation process. And the second term Si(t) shown in Equa-
tion (11) reflects the SDIs in the ith degradation process. 

In this section, DRA is considered into the degradation model 
because the general shocks may accelerate the internal clock of sys-
tems. To embody the effect of DRA, a time-scaled covariate factor is 
used. A new term G(t,γ(i)) is introduced into Di(t) for the ith degrada-
tion process through the time-scaled model of accelerated life testing. 
Here, the ith degradation path Di(t) is scaled by an accelerated factor 
from t to teG(t,γ(i)). Thus, Equation (15) can be rewritten as:

 M t X te Yi
i i

G t
ij

j

N ti( ) ( , )
( )

( ) ( )
( )

= +
=

∑η γ

1

1
 (16)

where G t N t Yi i i
ijj

N t( , ) ( )( ) ( ) ( ) ( )γ γ γ= + =∑1 1 2 1
1 , and the vector pa-

rameters γ(i) are unknown. Note that the first term in function G(t,γ(i)) 
embodies the effect from the number of general shocks towards the ith 
degradation process. In general, we have γ(i)≥0, and the first term re-
flects the fact that the degradation rate likely increases with the in-
crease of the number of general shocks. If ( )

1 0iγ = , it signifies that the 
degradation rate does not be affected by the number of general shocks. 
The second term is developed to present the situation that the cumula-
tive SDIs may give rise to an accelerated degradation rate of systems. 
Likewise, it indicates that the cumulative SDIs have no effect on the 
degradation rate of systems if γ 2 0i( ) = .

3.3. Reliability modeling for systems with a shock process 
and multiple degradation processes 

3.3.1. System reliability model

For a series system with m components, which is subject 
to a shock process and m degradation processes, the measurements 
of m degradation processes at time t are denoted by M(t)={M(1)(t), 
M(2)(t), …, M(m)(t)}. The system fails once any degradation process 
reaches its soft failure threshold. The soft failure thresholds corre-
sponding to the m degradation processes are denoted by L={l(1), l(2), 
…, l(m)}. Meanwhile, the hard failure occurs once any fatal shock ar-
rives at the system. Hence, only when there is no fatal shock and the 
degradation amount of each degradation process keeps below its soft 
failure threshold, the system is in the working state. Let T(i) be the time 
to failure for the ith degradation process. Then, the reliability of the 
series system subject to a shock process and m degradation processes 
at time t can be expressed by:

 
(1) (2) ( )

2( ) [ , , , ] [ ( ) 0]mR t P T t T t T t P N t= > > > × =  

 
(1) (1) (2) (2) ( ) ( )

2[ , , , ] [ ( ) 0]m mP M l M l M l P N t= < < < × =  (17)

If the m degradation processes are assumed to be independent, the 
reliability of the system presented in Equation (17) can be rewritten 
as:

 
(1) (2) ( )

2( ) ( ) ( ) ( ) [ ( ) 0]m
M M MR t R t R t R t P N t= × × × × =  (18)

where ( )( )m
MR t  indicates the marginal reliability of the mth degrada-

tion process at t. However, Equation (18) can’t provide precise estima-
tion of system reliability because these degradation processes are not 
independent with each other. Therefore, the dependence relationship 
between any two degradation processes should be paid attention to. 

Similarly, for a parallel system with m components, which is sub-
ject to m degradation processes and a shock process, the reliability of 
this system is calculated as:

(1) (2) ( )
2( ) 1 [1 ( )] [1 ( )] [1 ( )] [ ( ) 0]mR t P T t P T t P T t P N t= − − > × − > × × − > × =

(1) (1) (2) (2) ( ) ( )
21 [1 ( )] [1 ( )] [1 ( )] [ ( ) 0]m mP M l P M l P M l P N t= − − < × − < × × − < × =  

(19)

From Equation (19), it is found that there is a dependence rela-
tionship between multiple degradation processes. Obviously, the re-
liabilities of other systems of any structure functions can be easily 
calculated according to their structures through the definition of reli-
ability.

As we know, copula method is a powerful statistical tool to spec-
ify joint distribution if the known marginal distributions are complex. 
Thus, a copula method is utilized to develop the dependent structure 
among multiple degradation processes. In Sections 3.3.2 and 3.3.3, 
we use a series system as a representative system to represent the 
copula method.

3.3.2. Copula method for marginal reliability function of degrada-
tion processes

In probability theory and statistic, a copula is a multivariate prob-
ability distribution for which the marginal probability distribution of 
each variable is uniform. Copulas are used to describe the dependence 
structure between random variables. Any multivariate joint distribu-
tion can be written in terms of univariate marginal distribution func-
tions [18]. Consider a random vector (X1, X2, …, Xm). Suppose its 
marginals are continuous, and the marginal CDFs Fi(x)=P(Xi≤x) are 
continuous functions. Sklar’s theorem states that every multivari-
ate cumulative distribution function H(x1, x2, …, xm)=P(X1≤x1, …, 
Xm≤xm) of the random vector (X1, X2, …, Xm) can be expressed in 
terms of its marginals Fi(x)=P(Xi≤xi) and a copula C:

 1 2 1 1 2 2( , , , ) ( ( ), ( ), , ( ))m m mH x x x C F x F x F x=   (20)

The copula C contains all information on the dependence struc-
ture between the components of (X1, X2, …, Xm), whereas the mar-
ginal cumulative distribution function Fi(xi) contains all information 
of the marginal distribution.

The CDF of the time to failure for the m degradation processes in 
a series system can be expressed as Fi(t)=1−Ri(t) (i=1, 2, …, m). The 
joint CDF of T1, T2, …, Tm is written as:

1 1 2 2 1 2 1 1 2 2( , , , ) ( , , , ) ( ( ), ( ), , ( ))m m m m mP T t T t T t H t t t C F t F t F t≤ ≤ ≤ = =  

(21)

Correspondingly, the marginal reliability for the system is ex-
pressed as:

1 1 2 2 1 2 1 1 2 2( , , , ) ( , , , ) ( ( ), ( ), , ( ))m m m m mP T t T t T t H t t t C R t R t R t> > > = =  

(22)
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The relationship between C(F1(t1), F2(t2), …, Fm(tm)) and C(R1(t1), 
R2(t2), …, Rm(tm)) is represented as:

1 1 2 2
1 1

( ( ), ( ), , ( ))=1 ( ) ( ( ), ( ), )
m

m m i i i i h h
i i h m

C R t R t R t F t C F t F t
= ≤ < ≤

− +∑ ∑ 

  

1 1 2 2
1

( ( ), ( ), ( ), ) ( 1) ( ( ), ( ), , ( ))m
i i h h k k m m

i h k m
C F t F t F t C F t F t F t

≤ ≤ < ≤
− + −∑  

 
(23)

Therefore, the marginal reliability of the series system subject to 
m degradation processes at time t is expressed as:

                1 2( ) ( , , , )mR t P T t T t T t= > > >     
                       (1) (1) (2) (2) ( ) ( )= ( ( ) , ( ) , , ( ) )m mP M t l M t l M t l< < <

                       (1) (2) ( )( ( ), ( ), , ( ))i
M M MC R t R t R t= 

  (24)

where ( ) ( )i
MR t  denotes the marginal reliability function for the ith deg-

radation process at time t.

In particular, based on Equation (23) and Equation (24), the mar-
ginal reliability function for a system subject to two degradation proc-
esses is computed by:

          
(1) (2)(1) (1) (2) (2)( ( ) , ( ) ) ( ( ), ( ))M MP M t l M t l C R t R t< < =

             
(1) (2) (1) (2)1 ( ) ( ) ( ( ), ( ))M M M MF t F t C F t F t= − − +

                            
(1) (2)( ) ( ) 1 ( , )M MR t R t C u v= + − +  (25)

where 
( )

( ) ( )( ) ( )( ) ( )( )
1 1 2 21 , 1M M M Mu F t R t v F t R t= = − = = − .

3.3.3. Calculation steps for the system reliability

In this paper, a maximum likelihood estimation (MLE) is intro-
duced to complete the statistical inference for copula. In stage 1, we 
should calculate marginal reliability function for the ith degradation 
process. The system does not fail due to the ith degradation proc-
ess until t only if the cumulative degradation is below its soft fail-
ure threshold l(i) conditioned on the event that there is no fatal shock. 
Hence, the marginal reliability function for the ith degradation proc-
ess at time t is given by:

R t P M t l P X te S t l NM
i i i

i i
G t

i
ii( ) ( ) ( ) ( , ) ( )( ) ( ( ) ) ( ( ) ( )

( )
= < = ⋅ + <η γ

1(( ) ) ( ( ) )t n P N t n
n

= =
=

∞
∑ 1

0  
(26)

Suppose that random variables Wij (i=1, 2, …, m; j=1, 2, …, ∞) are 
i.i.d. Based on Equation (10) and (11), these random variables Yij (i=1, 
2, …, m; j=1, 2, …, ∞) are also i.i.d. In this section, Yij (i=1, 2, …, m; 
j=1, 2, …, ∞) are assumed to follow a common distribution Qi(x) (i=1, 

2, …, m) in the ith degradation process. Let ( )( )j
iQ z = P(Yi1+ Yi2 +…+ 

Yij≤ z) for j=1, 2, …, ∞. The marginal reliability function for the ith 
degradation process at time t can be rewritten as:
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where the number of general shocks is denoted by n, and Si(t) is re-
placed by z. Assume Qi(x) follows a normal distribution with mean µYi 
and variance σYi

2 . Then, Q zi
n( ) ( )  also follows a normal distribution 

N n nY Yi i
( , )µ σ 2 . Then, the marginal reliability probability ( ) ( )i

MR t  of 

the ith degradation process at discrete time points can be calculated by 
Equation (27). When m=2, we can obtain a group of data of u and v at 
the corresponding time t. 

In stage 2, we firstly estimate parameters in the copula C(F1(t1), 
F2(t2), …, Fm(tm)) using the values of u and v through the Copulafit 
function provided by MATLAB. A summary of the common copulas 
for two variates is presented in Table 3. Then, a likelihood criterion is 
used to check the goodness of fitting and specify the optimal copula. 
The likelihood function of the bivariate copula is given by:

 L c F t F tM k M k
k

m
=

=
∑ ln ( ( ), ( ) )( ) ( )1 2

1

0
α  (28)

where m0 represents the number of discrete time points, and α is the 
parameter in copulas. The copula with the biggest likelihood value is 
the most suitable copula, which can be used to describe the depend-
ence between any two degradation processes. 

Finally, the probability that the system will not fail due to degra-
dation processes is calculated according to Equation (24). Thus, the 
specific formulation of the system reliability becomes:

 (1) (2) ( )
2( ) ( ( ), ( ), , ( )) [ ( ) 0]m

M M MR t C R t R t R t P N t= =
 (29)

If m=2, the reliability of the system at time t is derived as:

 R t R t R t C u v s dsM M
t( ) [ ( ) ( ) ( , )]exp( ( ) )( ) ( )= + − + −∫1 2

201 λ  (30)

where λ2(t) is shown in Equation (5). Thus, the simplified steps to 
calculate the system reliability with copula approach are shown in 
Table 4.

4. Numerical example

Microelectromechanical systems (MEMS) oscillators are timing 
devices that generate highly stable reference frequencies to sequence 
electronic systems, manage data transfer and measure elapsed time. 
MEMS oscillators vibrate at their natural resonant frequency. Due 
to the working loss of operation, the mass of MEMS oscillators de-
creases after a period of time. The decrease of mass may cause an 
increase in the frequency of vibration, which is an obvious common 
phenomenon that exists in MEMS oscillators. On the other hand, ther-
mal shock, jitter and other vibration from the environment can bring 
about the change of system frequency. If these shocks or vibration are 
large enough, hard failure will occur to the MEMS oscillators. MEMS 
oscillators are particularly interesting and typical systems which are 
subject to multiple degradation processes and a random shock process 
[26]. Besides, these processes are dependent and compete with each 
other. 

4.1. Reliability modeling

In this example, the reliability model of microelectromechanical 
systems (MEMS) will be developed. Assume MEMS oscillators sub-
ject to two degradation processes and a shock process operate in un-
stable environment. The arrival time of shocks follows a NHPP with 
an intensity function λ(t). Meanwhile, for the first degradation path, 
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we set D1(t; X1) = X1t, in which X1 is Weibull dis-

tributed with a CDF 
1
( ) 1 exp[ ( / ) ]k

XF x x µ= − − , µ, 
k>0. For the second degradation path, suppose that  
D2(t;  X2)=X2log[θ1+t],  θ1>0, in which X2 is  
gamma distributed with a pdf 
f x x eX

x
2

1( ) / ( )( / )= − −α β αβ αΓ , x≥0. The soft 
failure threshold of the two degradation processes 
are denoted by l(1) and l(2). The system fails once the 
total degradation of any degradation process reach-
es its soft failure threshold. In addition, the shock 
loads towards the two degradation processes are as-
sumed to follow a normal distribution with mean 
µWi  and variance σWi

2 . The model parameters are 
presented in Table 5.

Substituting these parameters listed in Table 5 
into Equation (27), we can obtain the marginal re-
liability functions of two degradation processes. 
Then, the two functions are plotted in Figure 4. 

As shown in Figure 4, in the early stage of sys-
tem operation, the mar-
ginal reliability of the 
system under the second 
degradation process de-
creases faster compared 
to the first degradation 
process. In the later 
period of the system 
operation, the marginal 
reliability of the system 
under the first degrada-
tion process is slowly 
approaching 0, while 
the marginal reliability 
of the system under the 

second degradation process drops rapidly to 0. The marginal reliabil-
ity for the first degradation process becomes close to zero when the 
running time of the system is about 150 hours, while the marginal reli-
ability for the second degradation process is almost 0 when the system 
works for 75 hours. The values of marginal reliability for two degra-
dation processes at some discrete time points are given in Table 6. 

According to the properties of copula function, we can utilize the 
marginal reliability function to obtain the joint reliability function 
for degradation processes by using Copulafit function provided by 

Table 4. The calculation steps of system reliability

I  Marginal Reliability Function for Degradation Processes

 1. Calculate the marginal reliability function for each degradation process.

 2. Calculate the marginal reliability probability for each degradation process at discrete time points. 

II  Joint Reliability Function for Degradation Processes

 3. Estimate the parameters in different copulas based on the marginal reliability probability.

 4. Find out the most suitable copula through MLE.

 5. Calculate the joint copula C(u, v), and then calculate the reliability of the system subject to two degradation processes. 

Table 3. Commonly used copulas

Copula C (u, v|α) α∈Ω

Gauss
1 1 2 2( ) ( )

22

1 2exp
2(1 )2 1

u v asw s w dsdw
aa

φ φ

π

− −

−∞ −∞

 − −
  −−  

∫ ∫ α∈[-1,1]

t
1 1

2
2 2 2( ) ( )

22

1 21
(1 )2 1

v v

v

T u T v s w asw dsdw
v aaπ

− −
+ − 

 

−∞ −∞

 + −
+  −−  

∫ ∫ α∈[-1,1]

Frank 
1 ( 1)( 1)ln 1

1

au av

a
e e

eα

− −

−

 − −
− +  − 

α∈(-∞, ∞)/{0}

Gumbel { }1/ 1/exp [( ln ) ( ln ) ]u vα α α− − + − α∈(0, ∞)

Clayton 1/( 1)a au v α− − −+ − α∈(0, ∞)

Table 5. Parameters for MEMS oscillators subject to a shock process and 
two degradation processes

Parameter Value Source

µWi 5 Wang et al. (2012)

σWi 3 Wang et al. (2012)

γ1
1( ) 0.05 Wang et al. (2012)

γ 2
1( ) 0.008 Wang et al. (2012)

γ1
2( ) 0.01 Wang et al. (2012)

γ 2
2( ) 0.005 Wang et al. (2012)

l(1) 100 Wang et al. (2012)

l(2) 3.5 Wang et al. (2012)

WU 8 Wang et al. (2012)

WL 2 Assumption

b 0.6 Assumption

c 0.01 Guo et al. (2013)

r 0.1 Guo et al. (2013)

µ 0.8 Wang et al. (2012)

k 1 Wang et al. (2012)

θ 4.8 Wang et al. (2012)

α 20 Assumption

β 0.01 Wang et al. (2012)

Fig. 4. Marginal reliability function for two degradation processes  
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MATLAB. In this article, t-copula, Gaussian copula, Gumbel copula, 
Clayton copula and Frank copula are used to fit the joint reliability 
function for two degradation processes. MLE is employed to estimate 
the parameters of different copulas based on the values of marginal 
failure functions, namely, u and v listed in Table 6. Thus, the like-
lihood values and parameter values under five kinds of copulas are 
listed in Table 7. 

Through MATLAB, the values of five copula functions based on u 
and v in Table 6 are obtained and listed in Table 8. Then the reliabili-
ties of the system shown in Table 9 at different discrete time points 
are calculated according to Equation (30). And the reliabilities of the 
system at some discrete time points when the two degradation proc-
esses are assumed to be independent are also listed in Table 9. From 
Table 9, it is noted that the system reliabilities at different time points 
under those five copulas are similar, while they are bigger than that 
when the two degradation processes are assumed to be independent. 

It indicates that the reliability of the series system will be underesti-
mated if not considering the independence between multiple degrada-
tion processes.

We find from the five likelihood values in Table 7 that Frank 
copula is the most appropriate copula for fitting joint reliability for 
degradation processes of the system because it has the maximal likeli-
hood estimation value 29.28. Therefore, the reliability of the system 
should be calculated under Frank copula. The system reliability func-
tions based on dependence and independence assumption are plotted 
in Figure 5. From Figure 5, the system reliability decreases quickly 
when two degradation processes are assumed to be independent. An 
interesting finding is that the system reliability is relatively high un-
der the assumption that the two degradation processes are dependent. 
It also indicates that the reliability of the series system will be un-
derestimated when the two degradation processes are assumed to be 
independent. The finding has been clearly stated and explained in [4]. 

Table 6. Simulated marginal reliability and values of u and v for two degradation processes 

t 0 5 10 15 20 25 30 35 40

R tM
( ) ( )1 1 0.8373 0.7078 0.6050 0.5222 0.4540 0.3965 0.3475 0.3054

R tM
( ) ( )2 1 0.7923 0.6185 0.4767 0.3631 0.2734 0.2036 0.1500 0.1093

u 0 0.1627 0.2922 0.3950 0.4778 0.5460 0.6035 0.6525 0.6946

v 0 0.2077 0.3815 0.5233 0.6369 0.7266 0.7964 0.8500 0.8907

Table 7. Likelihood values and correlated parameters under five copulas

Copula Likelihood value Parameter

t 4.0099 α=0.9934, v=1.9724

Gaussian 5.9222 α=0.9930

Gumbel 1.1569 α=17.9540

Clayton 7.4402 α=13.7277

Frank 29.28 α=54.2398

Table 8. Values of C(u, v) at discrete time points under five copulas

Copula
C(u, v) at t

0 5 10 15 20 25 30 35 40

t 0 0.1611 0.2907 0.3939 0.4771 0.5455 0.6032 0.6523 0.6945

Gaussian 0 0.1616 0.2919 0.3950 0.4778 0.5460 0.6035 0.6525 0.6946

Gumbel 0 0.1615 0.2920 0.3950 0.4778 0.5460 0.6035 0.6525 0.6946

Clayton 0 0.1623 0.2917 0.3944 0.4771 0.5452 0.6026 0.6514 0.6933

Frank 0 0.1612 0.2921 0.3950 0.4778 0.5460 0.6035 0.6525 0.6946

Table 9. Comparisons of system reliability under five copulas and independence assumption

Copula
R(t) 

0 5 10 15 20 25 30 35 40

t 1 0.7289 0.5222 0.3679 0.2550 0.1739 0.1167 0.0770 0.0500

Gaussian 1 0.7294 0.5232 0.3687 0.2555 0.1742 0.1168 0.0771 0.0501

Gumbel 1 0.7293 0.5233 0.3687 0.2555 0.1742 0.1168 0.0771 0.0501

Clayton 1 0.7301 0.5230 0.3683 0.2550 0.1737 0.1163 0.0766 0.0495

Frank 1 0.7290 0.5234 0.3687 0.2555 0.1742 0.1168 0.0771 0.0501

Independence 1 0.6634 0.4378 0.2884 0.1896 0.1241 0.0807 0.0521 0.0334
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Therefore, it is very essential and important for reliability engineers 
to take the dependence among multiple degradation processes into 
account. 

4.2. Sensitivity analysis

In this section, sensitivity analysis is performed to estimate the 
effects of the model parameters WU and WL on the system reliability 
R(t). The results are exhibited in Figure 6 and Figure 7. As shown in 
Figure 6, we can find that R(t) is sensitive to the hard failure threshold 
WU. When the hard failure threshold WU increases from 7 to 9, the 
system reliability R(t) shifts to right, which embodies a better reliabil-
ity performance for a larger value of WU. It indicates that the system 
has the capacity to resist external shocks as the improvement of sys-
tem reliability. Moreover, as shown in Figure 7, the system reliability 
R(t) shifts to the right when the certain level WL increases from 1 to 3. 
It indicates that the bigger the certain level WL, the better the perform-
ance of systems. The reason is that if the performance of the system 
is good enough, small shocks will not have any impact on the system. 
It is obvious that a system with a certain level 3 is more reliable than 
systems with a certain level 1 or 2. From the viewpoint of sensitivity 
analysis, we know that the accuracy of the hard failure threshold and 
the certain level is very important for the reliability of systems.

5. Conclusions

A new reliability model for systems subject to multiple depend-
ent competing risks has been proposed. The DRA caused by random 
shocks into each degradation process is considered in the novel reli-
ability model. The dependence relationship among different degrada-
tion processes has been dealt with by a copula method. Meanwhile, 
the shock process is assumed to be a NHPP instead of HPP. A nu-
merical example is presented to verify the feasibility of the proposed 
model. Furthermore, a detailed analysis about model parameters has 
been done through sensitivity analysis. Based on the results of the 
numerical example, it can be concluded that the proposed reliability 
model is very suitable for complex systems subject to multiple de-
pendent competing risks, and it can assess the system reliability more 
factually. In addition, three interesting research findings are obtained 
through the analysis of the reliability model:

The reliabilities of series systems will be underestimated when (1) 
multiple degradation processes are assumed to be independent. 
Therefore, it is very necessary to consider the dependence among 
different degradation processes.

The assumption that the arrival time of random shocks follows (2) 
a NHPP is more reasonable when a system works in complex 
environment.
The series system reliability changes with the values of the hard (3) 
failure threshold WU and the certain level WL. The greater the 
values of WU and WL, the higher the system reliability.

In the numerical example, for convenience, multiple degradation 
processes is simplified to two degradation processes. However, a sys-
tem always experiences multiple different degradation processes when 
it is in a working state. Therefore, a challenging work is to calculate 
the reliability of systems subject to multiple degradation processes 
and a shock process. Furthermore, the aim of reliability assessment is 
to monitor systems real-timely and ensure the system reliability at a 
predetermined level by adopting some maintenance policies. Hence, 
the future work can be extended to develop a condition-based mainte-
nance policy for systems subject to multiple competing risks. 
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